Interactively Testing hote Servers U

Language

Guido van Rossum
CWI, dept. CST,; Kruislaan 413
1098 SJ Amsterdam, The Netherlands

E-mail: guido@cwi.nl

Jelke de Boer
HIO Enschede; P.O.Box 1326
7500 BH Enschede, The Netherlands

This paper describes how two tools that were developed quite independently
gained In power by a well-designed connection between them. The tools are
Python, an interpreted prototyping language, and AlIL, a Remote Procedure
Call stub generator. The context is Amoeba, a well-known distributed oper-
ating system developed jointly by the Free University and CWI in Amsterdam.

As a consequence of their integration, both tools have profited: Python gained
usability when used with Amoeba — for which it was not specifically developed
— and AIlL users now have a powerful interactive tool to test servers and to
experiment with new client/server interfaces.'

1 INTRODUCTION

Remote Procedure Call (RPC) interfaces, used in distributed systems like Amoeba
6, 7], have a much more concrete character than local procedure call interfaces in
traditional systems. Because clients and servers may run on different machines,
with possibly different word size, byte order, etc., much care is needed to describe
interfaces exactly and to implement them in such a way that they continue to
work when a client or server is moved to a different machine. Since machines
may fail independently, error handling must also be treated more carefully.

A common approach to such problems is to use a stub generator. This is a
program that takes an interface description and transforms it into functions that
must be compiled and linked with client and server applications. These functions
are called by the application code to take care of details of interfacing to the
system’s RPC layer, to implement transformations between data representations
of different machines, to check for errors, etc. They are called ‘stubs’ because

WA il _ i

1 An earlier version of this paper was presented at the Spring 1991 EurOpen Conference in
Tromsg under the title “Linking a Stub Generator (AIL) to a Prototyping Language (Python).”

283

they don’t actually perform the action that they are called for but only relay
the parameters to the server |2].

Amoeba’s stub generator is called AIL, which stands for Amoeba Interface
Language |9]. The first version of AIL generated only C functions, but an explicit
goal of AIL’s design was retargetability: it should be possible to add back-ends
that generate stubs for different languages from the same interface descriptions.
Moreover, the stubs generated by different back-ends must be interoperable: a
client written in Modula-3, say, should be able to use a server written in C, and
vice versa.

T'his interoperability is the key to the success of the marriage between AIL
and Python. Python is a versatile interpreted language developed by the first
author. Originally intended as an alternative for the kind of odd jobs that are
traditionally solved by a mixture of shell scripts, manually given shell commands,
and an occasional ad hoc C program, Python has evolved into a general inter-
active prototyping language. It has been applied to a wide range of problems,
from replacements for large shell scripts to fancy graphics demos and multimedia
applications.

One of Python’s strengths is the ability for the user to type in some code
and immediately run it: no compilation or linking is necessary. Interactive
performance is further enhanced by Python’s concise, clear syntax, its very-high-
level data types, and its lack of declarations (which is compensated by run-time
type checking). All this makes programming in Python feel like a leisure trip
compared to the hard work involved in writing and debugging even a smallish
C program.

It should be clear by now that Python will be the ideal tool to test servers
and their interfaces. Especially during the development of a complex server, one
often needs to generate test requests on an ad hoc basis, to answer questions like
“what happens if request X arrives when the server is in state Y.” to test the
behavior of the server with requests that touch its limitations, to check server
responses to all sorts of wrong requests, etc. Python’s ability to immediately
execute ‘improvised’ code makes it a much better tool for this situation than C.

T'he link to AIL extends Python with the necessary functionality to connect to
arbitrary servers, making the server testbed sketched above a reality. Python’s
high-level data types, general programming features, and system interface ensure
that it has all the power and flexibility needed for the job.

One could go even further than this. Current distributed operating systems,
based on client-server interaction, all lack a good command language or ‘shell’

to give adequate access to available services. Python has considerable potential
for becoming such a shell.

1.1 Querview of this Paper

The rest of this paper contains three major sections and a conclusion. First an
overview of the Python programming language is given. Next comes a short
description of AIL, together with some relevant details about Amoeba. Finally,
the design and construction of the link between Python and AIL is described in
much detaill. The conclusion looks back at the work and points out weaknesses
and strengths of Python and AIL that were discovered in the process.

234

2 AN OVERVIEW OF PYTHON

Python® owes much to ABC [4], a language developed at CWI as a programming
language for non-expert computer users. Python borrows freely from ABC’s
syntax and data types, but adds modules, exceptions and classes, extensibility,
and the ability to call system functions. The concepts of modules, exceptions and

¢¢¢¢¢

(to some extent) classes are influenced strongly by their occurrence in Modula-3
3].

Although Python resembles ABC in many ways, there is a a clear difference in
those who use a computer as a tool, but occasionally need to write a program.
For this reason, ABC is not just a programming language but also a programming
environment, which comes with an integrated syntax-directed editor and some
source manipulation commands. Python, on the other hand, aims to be a tool

with different feature sets makes it possible to choose ‘the right tool for the job.’
The features added to Python make it more useful than ABC in an environment
where access to system functions (such as file and directory manipulations) are
common. They also support the building of larger systems and libraries. The
Python implementation offers little in the way of a programming environment,
but 1s designed to integrate seamlessly with existing programming environments
(e.g. UNIX and Emacs).

Perhaps the best introduction to Python is a short example. The following is
a complete Python program to list the contents of a UNIX directory.

lmport sys, posiXx

def ls(dirname) : # Print sorted directory contents
names = posix.listdir(dirname)
names.sort ()
for name in names:
if name[0O] != ’.’: print name

1s(sys.argv[1])

The largest part of this program, in the middle starting with def, is a func-
tion definition. It defines a function named 1s with a single parameter called
dirname. (Comments in Python start with ‘#’ and extend to the end of the
line.) The function body is indented: Python uses indentation for statement
grouping instead of braces or begin/end keywords. This is shorter to type and
avoids frustrating mismatches between the perception of grouping by the user
and the parser. Python accepts one statement per line; long statements may
be broken in pieces using the standard backslash convention. If the body of a
compound statement is a single, simple statement, it may be placed on the same
line as the head. |

T'he first statement of the function body calls the function 1listdir defined
In the module posix. This function returns a list of strings representing the

2Named after the funny TV show, not the nasty reptile.

289

contents of the directory name passed as a string argument, here the argument
dirname. If dirname were not a valid directory name, or perhaps not even a
string, 1istdir would raise an exception and the next statement would never be
reached. (Exceptions can be caught in Python; see later.) Assuming listdir
returns normally, its result is assigned to the local variable names.

The second statement calls the method sort of the variable names. This
method is defined for all lists in Python and does the obvious thing: the elements
of the list are reordered according to their natural ordering relationship. Since in
our example the list contains strings, they are sorted in ascending ASCII order.

The last two lines of the function contain a loop that prints all elements of
the list whose first character isn’t a period. In each iteration, the for statement
assigns an element of the list to the local variable name. The print statement is
intended for simple-minded output; more elaborate formatting is possible with
Python’s string handling functions.

The other two parts of the program are easily explained. The first line is
an import statement that tells the interpreter to import the modules sys and
posix. As it happens these are both built into the interpreter. Importing a
module (built-in or otherwise) only makes the module name available in the
current scope; functions and data defined in the module are accessed through
the dot notation as in posix.listdir. The scope rules of Python are such that
the imported module name posix is also available in the function 1s (this will
be discussed in more detail later).

Finally, the last line of the program calls the 1s function with a definite
argument. It must be last since Python objects must be defined before they can
be used; in particular, the function 1s must be defined before it can be called.
The argument to 1s is sys.argv[1], which happens to be the Python equivalent
of $1 in a shell script or argv[1] in a C program’s main function.

2.1 Python Data Types

(This and the following subsections describe Python in quite a lot of detail. If
you are more interested in AIL, Amoeba and how they are linked with Python,
you can skip to section 3 now.)

Python’s syntax may not have big surprises (which is exactly as it should be),
but its data types are quite different from what is found in languages like C, Ada
or Modula-3. All data types in Python, even integers, are ‘objects’. All objects
participate in a common garbage collection scheme (currently implemented using
reference counting). Assignment is cheap, independent of object size and type:
only a pointer to the assigned object is stored in the assigned-to variable. No
type checking is performed on assignment; only specific operations like addition
test for particular operand types.

The basic object types in Python are numbers, strings, tuples, lists and dic-
tionaries. Some other object types are open files, functions, modules, classes,
and class instances; even types themselves are represented as objects. Extension
modules written in C can define additional object types: examples are objects
representing windows and Amoeba capabilities. Finally, the implementation it-
selt makes heavy use of objects, and defines some private ob ject types that aren’t
normally visible to the user. There is no explicit pointer type in Python.

286

Numbers, both integers and floating point, are pretty straightforward. The
notation for numeric literals is the same as in C, including octal and hexadec-
imal integers; precision is the same as long or double in C. A third numeric
type, ‘long integer’, written with an ‘L’ suffix, can be used for arbitrary preci-
sion calculations. All arithmetic, shifting and masking operations from C are
supported.

Strings are ‘primitive’ objects just like numbers. String literals are written
between single quotes, using similar escape sequences as in C. Operations are
built 1nto the language to concatenate and to replicate strings, to extract sub-
strings, etc. There is no limit to the length of the strings created by a program.
There 1s no separate character data type; strings of length one do nicely.

Tuples are a way to ‘pack’ small amounts of heterogeneous data together and
carry them around as a unit. Unlike structure members in C, tuple items are

nameless. Packing and unpacking assignments allow access to the items, for
example:

x = ’Hi’, (1, 2), ’World’ # x is a 3-item tuple,

its middle item is (1, 2)
P, 4, T = X # unpack x into p, q and r
a, b=aq # unpack g into a and b

A combination of packing and unpacking assignment can be used as parallel
assignment, and is idiom for permutations, e.g.:

P, 9 =g, P # swap without temporary
a, b, c=b, ¢c, a # cyclic permutation

Tuples are also used for function argument lists if there is more than one argu-
ment. A tuple object, once created, cannot be modified; but it is easy enough
to unpack it and create a new, modified tuple from the unpacked items and
assign this to the variable that held the original tuple object (which will then be
garbage-collected).

Lists are array-like objects. List items may be arbitrary objects and can be
accessed and changed using standard subscription notation. Lists support item
insertion and deletion, and can therefore be used as queues, stacks etc.; there is
no limit to their size.

Strings, tuples and lists together are sequence types. These share a common
notation for generic operations on sequences such as subscription, concatenation,
slicing (taking subsequences) and membership tests. As in C, subscripts start
at 0.

Dictionaries are ‘mappings’ from one domain to another. The basic opera-
tions on dictionaries are item insertion, extraction and deletion, using subscript
notation with the key as subscript. (The current implementation allows only
strings in the key domain, but a future version of the language may remove this
restriction.)

2.2 Statements

Python has various kinds of simple statements, such as assignments and print
statements, and several kinds of compound statements, like if and for state-

287

ments. Formally, function definitions and import statements are also statements,
and there are no restrictions on the ordering of statements or their nesting:
import may be used inside a function, functions may be defined conditionally
using an if statement, etc. The effect of a declaration-like statement takes place
only when 1t is executed.

All statements except assignments and expression statements begin with a
keyword: this makes the language easy to parse. An overview of the most
common statement forms in Python follows.

An assignment has the general form

variable = variable = ... = variable = expression

It assigns the value of the expression to all listed variables. (As shown in
the section on tuples, variables and expressions can in fact be comma-separated
lists.) The assignment operator is not an expression operator; there are no
horrible things in Python like

while (p = p->next) { ... }

Expression syntax is mostly straightforward and will not be explained in detail
here.

An ezpression statement is just an expression on a line by itself. This writes
the value of the expression to standard output, in a suitably unambiguous way,
unless it i1s a ‘procedure call’ (a function call that returns no value). Writing
the value is useful when Python is used in ‘calculator mode’, and reminds the
programmer not to ignore function results.

The if statement allows conditional execution. It has optional elif and
else parts; a construct like if...elif...elif...elif...else can be used to
compensate for the absence of a switch or case statement.

Looping is done with while and for statements. The latter (demonstrated
In the ‘Is’ example earlier) iterates over the elements of a ‘sequence’ (see the
discussion of data types below). It is possible to terminate a loop with a break
statement or to start the next iteration with continue. Both looping statements
have an optional else clause which is executed after the loop is terminated
normally, but skipped when it is terminated by break. This can be handy for
searches, to handle the case that the item is not found.

Python’s exception mechanism is modelled after that of Modula-3. Exceptions

are raised by the interpreter when an illegal operation is tried. It is also posmble
to explicitly raise an exception with the raise statement:

ralse 633}97‘683’&071, e:z:p'resszon

The first expression identifies which exception should be ralsed; there are
several built-in exceptions and the user may define additional ones. The second,
optional expression is passed to the handler, e.g. as a detailed error message.

Exceptions may be handled (caught) with the try statement, which has the
following general form:

288

try: block
except expression, wvariable: block
except ezxpression, wvartable: block

except: block

When an exception is raised during execution of the first block, a search for
an exception handler starts. The first except clause whose expresston matches
the exception is executed. The expression may specify a list of exceptions to
match against. A handler without an expression serves as a ‘catch-all’. If there
1s no match, the search for a handler continues with outer try statements; it
no match 1s found on the entire invocation stack, an error message and stack
trace are printed, and the program is terminated (interactively, the interpreter
returns to its main loop).

Note that the form of the except clauses encourages a style of programming
whereby only selected exceptions are caught, passing unanticipated exceptions on
to the caller and ultimately to the user. This is preferable over a simpler ‘catch-
all’ error handling mechanism, where a simplistic handler intended to catch a
single type of error like ‘file not found’ can easily mask genuine programming
errors — especially in a language like Python which relies strongly on run-time
checking and allows the catching of almost any type of error.

Other common statement forms, which we have already encountered, are func-
tion definitions, import statements and print statements. There is also a del
statement to delete one or more variables, a return statement to return from

a function, and a global statement to allow assignments to global variables.
Finally, the pass statement is a no-op.

2.8 Fxecution Model

A Python program is executed by a stack-based interpreter.

When a function is called, a new ‘execution environment’ for it is pushed onto
the stack. An execution environment contains (among other data) pointers to
two ‘symbol tables’ that are used to hold variables: the local and the global
symbol table. The local symbol table contains local variables of the current
function invocation (including the function arguments); the global symbol table
contains variables defined in the module containing the current function.

The ‘global’ symbol table is thus only global with respect to the current func-
tion. There are no system-wide global variables; using the import statement
it is easy enough to reference variables that are defined in other modules. A
system-wide read-only symbol table is used for built-in functions and constants
though.

On assignment to a variable, by default an entry for it is made in the local
symbol table of the current execution environment. The global command can
override this (it is not enough that a global variable by the same name already
exists). When a variable’s value is needed, it is searched first in the local symbol
table, then in the global one, and finally in the symbol table containing built-in
functions and constants.

The term ‘variable’ in this context refers to any name: functions and imported
modules are searched in exactly the same way.

239

Names defined in a module’s symbol table survive until the end of the program.
This approximates the semantics of file-static global variables in C or module
variables in Modula-3. A module is initialized the first time 1t is imported, by
executing the text of the module as a parameterless function whose local and
global symbol tables are the same, so names are defined in module’s symbol
table. (Modules implemented in C have another way to define symbols.)

A Python main program is read from standard input or from a script file passed
as an argument to the interpreter. It is executed as if an anonymous module
was 1mported. Since import statements are executed like all other statements,
the initialization order of the modules used in a program is defined by the flow
of control through the program.

The ‘attribute’ notation m.name, where m is a module, accesses the symbol
name in that module’s symbol table. It can be assigned to as well. This is in
fact a special case of the construct z.name where x denotes an arbitrary object:
the type of z determines how this is to be interpreted, and what assignment to
1t means.

For instance, when a is a list object, a.append yields a built-in ‘method’
object which, when called, appends an item to a. (If a and b are distinct list
objects, a.append and b.append are distinguishable method objects.) Normally,
In statements like a.append(x), the method object a.append is called and then
discarded, but this is a matter of convention.

List attributes are read-only — the user cannot define new list methods. Some
objects, like numbers and strings, have no attributes at all. Like all type checking
in Python, the meaning of an attribute is determined at run-time — when the
parser sees x.name, 1t has no idea of the type of z. Note that z here does not have
to be a variable — it can be an arbitrary (perhaps parenthesized) expression.

Given the flexibility of the attribute notation, one is tempted to use methods
to replace all standard operations. Yet, Python has kept a small repertoire of
built-in functions like 1len() and abs(). The reason is that in some cases the
function notation is more familiar than the method notation; just like pPrograms
would become less readable if all infix operators were replaced by function calls,
they would become less readable if all function calls had to be replaced by method
calls (and vice versa!).

The choice whether to make something a built-in function or a method is a
matter of taste. For arithmetic and string operations, function notation is pre-
ferred, since frequently the argument to such an operation is an expression using
infix notation, as in abs(a+b); this definitely looks better than (a+b) .abs().
The choice between make something a built-in function or a function defined in a
built-in method (requiring import) is similarly guided by intuition; all in all, only
functions needed by ‘general’ programming techniques are built-in functions.

2.4 Classes

Python has a class mechanism distinct from the object-orientation already ex-
plained. A class in Python is not much more than a collection of methods and a.
way to create class instances. Class methods are ordinary functions whose first

parameter 1s the class instance; they are called using the method notation.
For instance, a class can be defined as follows:

290

class Foo:

def methl(self, arg):
def meth2(self):

A class instance is created by x = Foo() and its methods can be called thus:

x.methl(’Hi There!?)
x.meth2 ()

The functions used as methods are also available as attributes of the class ob ject,
and the above method calls could also have been written as follows:

Foo.methl1(x, ’Hi There!?)
Foo.meth2 (x)

Class methods can store instance data by assigning to instance data attributes,
e.g.:

self.size = 100
self.title = ’Dear John’

Data attributes do not have to be declared; as with local variables, they spring
Into existence when assigned to. It is a matter of discretion to avoid name con-
flicts with method names. This facility is also available to class users; instances
of a method-less class can be used as records with named fields.

There i1s no built-in mechanism for instance initialization. Classes by conven-

tion provide an init() method which initializes the instance and then returns
1t, so the user can write

x = Foo() .init(’Dr. Strangelove’)

Any user-defined class can be used as a base class to derive other classes.
However, built-in types like lists cannot be used as base classes. (Incidentally,
the same is true in C++ and Modula-3.) A class may override any method of
its base classes. Instance methods are first searched in the method list of their
class, and then, recursively, in the method lists of their base class. Initialization
methods of derived classes should explicitly call the initialization methods of
their base class. |

A simple form of multiple inheritance is also supported: a class can have
multiple base classes, but the language rules for resolving name conflicts are
somewhat simplistic, and consequently the feature has so far found little usage.

2.5 The Python Library

Python comes with an extensive library, structured as a collection of modules.
A few modules are built into the interpreter: these generally provide access to
system libraries implemented in C such as mathematical functions or operating
system calls. T'wo built-in modules provide access to internals of the interpreter
and 1ts environment. Even abusing these internals will at most cause an excep-
tion in the Python program; the interpreter will not dump core because of errors
in Python code.

291

Most modules however are written in Python and distributed with the in-
terpreter; they provide general programming tools like string operations and
random number generators, provide more convenient interfaces to some built-in
modules, or provide specialized services like a getopt-style command line option
processor for stand-alone scripts.

There are also some modules written in Python that dig deep 1n the internals
of the interpreter; there is a module to browse the stack backtrace when an
unhandled exception has occurred, one to disassemble the internal representation
of Python code, and even an interactive source code debugger which can trace
Python code, set breakpoints, etc.

2.6 FExtensibility

It is easy to add new built-in modules written in C to the Python interpreter.
Extensions appear to the Python user as built-in modules. Using a built-in
module is no different from using a module written in Python, but obviously the
author of a built-in module can do things that cannot be implemented purely in
Python.

In particular, built-in modules can contain Python-callable functions that call
functions from particular system libraries (‘wrapper functions’), and they can
define new object types. In general, if a built-in module defines a new object
type, 1t should also provide at least one function that creates such objects.
Attributes of such object types are also implemented in C; they can return data
associated with the object or methods, implemented as C functions.

For instance, an extension was created for Amoeba: it provides wrapper func-
tions for the basic Amoeba name server functions, and defines a ‘capability’
object type, whose methods are file server operations. Another extension is a
built-in module called posix; it provides wrappers around post UNIX system
calls. Extension modules also provide access to two different windowing/graphics
interfaces: STDWIN [8] (which connects to X11 on UNIX and to the Mac Tool-
box on the Macintosh), and the Graphics Library (GL) for Silicon Graphics
machines.

Any function in an extension module is supposed to type-check its arguments;
the interpreter contains a convenience function to facilitate extracting C values
from arguments and type-checking them at the same time. Returning values is
also painless, using standard functions to create Python objects from C values.

On some systems extension modules may be dynamically loaded, thus avolding

the need to maintain a private copy of the Python interpreter in order to use a
private extension.

3 A SHORT DESCRIPTION OF AIL AND AMOEBA

An RPC stub generator takes an interface description as input. The designer of
a stub generator has at least two choices for the input language: use a suitably
restricted version of the target language, or design a new language. The first
solution was chosen, for instance, by the designers of Flume, the stub generator
for the Topaz distributed operating system built at DEC SRC [1, 5].

292

Flume’s one and only target language is Modula-2+ (the predecessor of Modula-
3). Modula-2+, like Modula-N for any N. has an interface syntax that is well
suited as a stub generator input language: an interface module declares the func-
tions that are ‘exported’ by a module implementation, with their parameter and
return types, plus the types and constants used for the parameters. Therefore,
the input to Flume is simply a Modula-2+ interface module. But even in this
ideal situation, an RPC stub generator needs to know things about functions
that are not stated explicitly in the interface module: for instance, the transfer
direction of VAR parameters (IN, OUT or both) is not given. Flume solves
this and other problems by a mixture of directives hidden in comments and a
convention for the names of objects. Thus, one could say that the designers of

Flume really created a new language, even though it looks remarkably like their
target language.

3.1 The AIL Input Language

Amoeba uses C as its primary programming language. C function declarations
(at least in ‘Classic’ C) don’t specify the types of the parameters, let alone their
transter direction. Using this as input for a stub generator would require almost
all information for the stub generator to be hidden inside comments, which would
require a rather contorted scanner. Therefore we decided to design the input
syntax for Amoeba’s stub generator ‘from scratch’. This gave us the liberty to
invent proper syntax not only for the transfer direction of parameters, but also
for variable-length arrays.

On the other hand we decided not to abuse our freedom. and borrowed as much
from C as we could. For instance, AIL runs its input through the C preprocessor,
so we get macros, mclude files and conditional compilation for free. AIL’s type
declaration syntax is a superset of C’s, so the user can include C header files to
use the types declared there as function parameter types —— which are declared
using function prototypes as in C++ or Standard C. It should be clear by now
that AIL’s lexical conventions are also identical to C’s. The same is true for its
expression syntax.

Where does AIL differ from C, then? Function declarations in AIL are grouped
in classes. Classes in AIL are mostly intended as a grouping mechanism: all func-
tions 1mplemented by a server are grouped together in a class. Inheritance is
used to form new groups by adding elements to existing groups; multiple inher-
1tance 1s supported to join groups together. Classes can also contain constant
and type definitions, and one form of output that AIL can generate is a header
file for use by C programmers who wish to use functions from a particular AIL
class.

Let’s have a look at some (unrealistically simple) class definitions:

#include <amoeba.h> /* Defines ‘capability’, etc. */

class standard_ops [1000 .. 1999] {
/* Operations supported by most interfaces */
std_info(*, out char buf[size:100], out int size);
std_destroy (*) ;

+;

293

T'his defines a class called ‘standard_ops’ whose request codes are chosen by AIL
from the range 1000-1999. Request codes are small integers used to identify
remote operations. The author of the class must specify a range from which AIL
chooses, and class authors must make sure they avoid conflicts, e.g. by using
an ‘assigned number administration office’. In the example, ‘std_info’ will be
assigned request code 1000 and ‘std._destroy’ will get code 1001. There is also
an option to explicitly assign request codes, for compatibility with servers with
manually written interfaces.

The class ‘standard_ops’ defines two operations, ‘std_info’ and ‘std_destroy’.
The first parameter of each operation is a star (‘*’); this is a placeholder for a
capability that must be passed when the operation is called. The description
of Amoeba below explains the meaning and usage of capabilities; for now, it is
sufficient to know that a capability is a small structure that uniquely identifies
an object and a server or service.

The standard operation ‘std.info’ has two output parameters: a variable-size
character buffer (which will be filled with a short descriptive string of the ob-
Ject to which the operation is applied) and an integer giving the length of this
string. T'he standard operation ‘std_destroy’ has no further parameters — it just
destroys the object, if the caller has the right to do so.

The next class is called ‘tty’:

class tty [2000 .. 2099] {
inherit standard_ops;
const TTY_MAXBUF = 1000;
tty_write(*, char buf([size:TTY_MAXBUF], int size):
tty_read(*, out char buf[size:TTY_MAXBUF], out int size);
s

TI'he request codes for operations defined in this class lie in the range 2000-2099:
inherited operations use the request codes already assigned to them. The opera-
tions defined by this class are ‘tty_read’ and ‘tty_write’, which pass variable-sized
data buffers between client and server. Class ‘tty’ inherits class ‘standard_ops’,
so tty objects also support the operations ‘std_info’ and ‘std_destroy’.

Only the interface for ‘std_info’ and ‘std_destroy’ is shared between tty objects
and other objects whose interface inherits ‘standard_ops’; the implementation
may differ. Even multiple implementations of the ‘tty’ interface may exist, e.g.
a driver for a console terminal and a terminal emulator in a window. To expand
on the latter example, consider:

class window [2100 .. 2199] {
inherit standard_ops; .
win_create(*, int x, int y, int width, int height,
out capability win_cap);
win_reconfigure(*, int x, int y, int width, int height);

};

class tty_emulator [2200 .. 2299] {

inherit tty, window;
s

294

Here two new interface classes are defined. Class ‘window’ could be used for
creating and manipulating windows. Note that ‘win_create’ returns a capability
for the new window. This request should probably should be sent to a generic
window server capability, or it might create a subwindow when applied to a
window object.

Class ‘tty_emulator’ demonstrates the essence of multiple inheritance. It is
presumably the interface to a window-based terminal emulator. Inheritance
1s transitive, so ‘tty_emulator’ also implicitly inherits ‘standard_ops’. In fact, it
inherits it twice: once via ‘tty’ and once via ‘window’. Since AIL class inheritance

el

class multiple times is never a problem and has the same effect as inheriting 1t
once.

Note that the power of AIL classes doesn’t go as far as C+-+. AIL classes
cannot have data members, and there is no mechanism for a server that imple-
ments a derived class to inherit the implementation of the base class — other

than copying the source code. The syntax for class definitions and inheritance
1s also different.

3.2 Amoeba

T'he smell of ‘object-orientedness’ that the use of classes in AIL creates matches
nicely with Amoeba’s object-oriented approach to RPC. In Amoeba, almost all
operating system entities (files, directories, processes, devices etc.) are imple-
mented as objects. Objects are managed by services and represented by capabili-
ties. A capability gives its holder access to the object it represents. Capabilities
are protected cryptographically against forgery and can thus be kept in user
space. A capability is a 128-bit binary string, subdivided as follows:

48 24 8 48 Bits
o i e e +
| Service | Object | Perm. | Check |
| port | number | bits | word |
et T Fm—————— e +

T'he service port is used by the RPC implementation in the Amoeba kernel to
locate a server implementing the service that manages the object. In many cases
there is a one-to-one correspondence between servers and services (each service
1s implemented by exactly one server process), but some services are replicated.
For instance, Amoeba’s directory service, which is crucial for gaining access to
most other services, is implemented by two servers that listen on the same port
and know about exactly the same objects.

The object number in the capability is used by the server receiving the request
for identifying the object to which the operation applies. The permission bits
specify which operations the holder of the capability may apply. The last part
of a capability is a 48-bit long ‘check word’, which is used to prevent forgery.
The check word i1s computed by the server based upon the permission bits and a

299

random key per object that it keeps secret. If you change the permission bits you
must compute the proper check word or else the server will refuse the capability.
Due to the size of the check word and the nature of the cryptographic ‘one-way
function’ used to compute it, inverting this function is impractical, so forging
capabilities is impossible.”

A working Amoeba system is a collection of diverse servers, managing files,
directories, processes, devices etc. While most servers have their own interface,
there are some requests that make sense for some or all object types. For in-
stance, the std_info() request, which returns a short descriptive string, applies to
all object types. Likewise, std_destroy() applies to files, directories and processes,
but not to devices.

Similarly, different file server implementations may want to ofter the same
interface for operations like read() and write() to their clients. AIL’s grouping
of requests intc classes is ideally suited to describe this kind of interface sharing,
and a class hierarchy results which clearly shows the similarities between server
interfaces (not necessarily their implementations!).

The base class of all classes defines the std_info() request. Most server inter-
faces actually inherit a derived class that also defines std_destroy(). File servers
inherit a class that defines the common operations on files, etc.

3.3 How AIL Works
The AIL stub generator functions in three phases:

® parsing,
e strategy determination,

e code generation.

Phase one parses the input and builds a symbol table containing everything
1t knows about the classes and other definitions found in the input.

Phase two determines the strategy to use for each function declaration in turn
and decides upon the request and reply message formats. This is not a simple
matter, because of various optimization attempts. Amoeba’s kernel interface for
RPC requests takes a fixed-size header and one arbitrary-size buffer. A large part
of the header holds the capability of the object to which the request is directed,
but there is some space left for a few integer parameters whose interpretation is
left up to the server. AIL tries to use these slots for simple integer parameters,
for two reasons.

First, unlike the buffer, header fields are byte-swapped by the RPC layer in the
kernel 1f necessary, so it saves a few byte swapping instructions in the user code.
Second, and more important, a common form of request transfers a few integers
and one large buffer to or from a server. The read() and write() requests of
most file servers have this form, for instance. If it is possible to place all integer
parameters in the header, the address of the buffer parameter can be passed
directly to the kernel RPC layer. While AIL is perfectly capable of handling

RN e

3As computers become faster, inverting the one-way function becomes less impractical.
T'herefore, a next version of Amoeba will have 64-bit check words.

296

requests that do not fit this format, the resulting code involves allocating a
new bufler and copying all parameters into it. It is a top priority to avoid this
copying (‘marshalling’) if at all possible, in order to maintain Amoeba’s famous
RPC performance.

When AIL resorts to copying parameters into a buffer, it reorders them so
that integers indicating the lengths of variable-size arrays are placed in the buffer
before the arrays they describe, since otherwise decoding the request would be
properly in the buffer — this can speed up (un)marshalling.

Phase three is the code generator, or back-end. There are in fact many
different back-ends that may be called in a single run to generate different types
of output. The most important output types are header files (for inclusion by
the clients of an interface), client stubs, and ‘server main loop’ code. The latter
decodes incoming requests in the server. The generated code depends on the
programming language requested, and there are separate back-ends for each
supported language.

It 1s important that the strategy chosen by phase two is independent of the
language requested for phase three — otherwise the interoperability of servers
and clients written in different languages would be compromised.

4 LINKING AIL TO PYTHON

From the previous section it can be concluded that linking AIL to Python is a

matter of writing a back-end for Python. This is indeed what we did.
Considerable time went into the design of the back-end in order to make

the resulting RPC interface for Python fit as smoothly as possible in Python’s

programming style. For instance, the issues of parameter transfer, variable-size

arrays, error handling, and call syntax were all solved in a manner that favors

razl

for C, without compromising network-level compatibility:.

4.1 Mapping AIL Entities to Python

For each programming language that AIL is to support, a mapping must be de-
signed between the data types in AIL and those in that language. Other aspects
of the programming languages, such as differences in function call semantics,
must also be taken care of.

While the mapping for C is mostly straightforward, the mapping for Python
requires a little thinking to get the best results for Python programmers.

4.1.1 Parameter Transfer Direction Perhaps the simplest issue is that of parame-
ter transfer direction. Parameters of functions declared in AIL are categorized as
being of type in, out or in out (the same distinction as made in Ada). Python
only has call-by-value parameter semantics; functions can return multiple values
as a tuple. This means that, unlike the C back-end, the Python back-end cannot
always generate Python functions with exactly the same parameter list as the
AIL functions.

Instead, the Python parameter list consists of all in and in out parame-
ters, in the order in which they occur in the AIL parameter list; similarly, the

297

Python function returns a tuple containing all in out and out parameters. In
fact Python packs function parameters into a tuple as well, stressing the sym-
metry between parameters and return value. For example, a stub with this AIL
parameter list:

(¥, in int pl, in out int p2, in int p3, out int p4)
will have the following parameter list and return values in Python:

(plr P2, PS) e (P23 p4)

4-1.2 Variwable-size Entities The support for variable-size objects in AIL is strongly
guided by the limitations of C in this matter. Basically, AIL allows what is fea-
sible in C: functions may have variable-size arrays as parameters (both input or
output), provided their length is passed separately. In practice this is narrowed
to the following rule: for each variable-size array parameter, there must be an
integer parameter giving its length. (An exception for null-terminated strings is
planned but not yet realized.)

Variable-size arrays in AIL or C correspond to sequences in Python: lists,
tuples or strings. These are much easier to use than their C counterparts. Given
a sequence object in Python, it is always possible to determine its size: the built-
In function len() returns it. It would be annoying to require the caller of an
RPC stub with a variable-size parameter to also pass a parameter that explicitly
gives 1ts size. Therefore we eliminate all parameters from the Python parameter
list whose value is used as the size of a variable-size array. Such parameters are
easilly found: the array bound expression contains the name of the parameter
giving its size. This requires the stub code to work harder (it has to recover
the value for size parameters from the corresponding sequence parameter), but
at least part of this work would otherwise be needed as well, to check that the
given and actual sizes match.

Because of the symmetry in Python between the parameter list and the return
value of a function, the same elimination is performed on return values contain-
Ing variable-size arrays: integers returned solely to tell the client the size of a
returned array are not returned explicitly to the caller in Python.

4.1.3 Error Handling Another point where Python is really better than C is
the issue of error handling. It is a fact of life that everything involving RPC
may fail, for a variety of reasons outside the user’s control: the network may be
disconnected, the server may be down, etc. Clients must be prepared to handle
such failures and recover from them, or at least print an error message and die.
In C this means that every function returns an error status that must be checked
by the caller, causing programs to be cluttered with error checks — or WOTS€,
programs that ignore errors and carry on working with garbage data.

In Python, errors are generally indicated by exceptions, which can be handled
out of line from the main flow of control if necessary, and cause immediate pro-
gram termination (with a stack trace) if ignored. To profit from this feature,
all RPC errors that may be encountered by AlL-generated stubs in Python are
turned Into exceptions. An extra value passed together with the exception is

298

used to relay the error code returned by the server to the handler. Since in gen-
eral RPC failures are rare, Python test programs can usually ignore exceptions
— making the program simpler — without the risk of occasional errors going
undetected. (I still remember the embarrassment a hundredfold speed improve-
ment reported, long, long, ago, about a new version of a certain program, which
later had to be attributed to a benchmark that silently dumped core...)

4.1.4 Function Call Syntax Amoeba RPC operations always need a capability
parameter (this is what the “*’ in the AIL function templates stands for); the
service is identified by the port field of the capability. In C, the capability must
always be the first parameter of the stub function, but in Python we can do
better.

A Python capability is an opaque object type in its own right, which is used, for
Instance, as parameter to and return value from Amoeba’s name server functions.
Python objects can have methods, so it is convenient to make all AIL-generated

stubs methods of capabilities instead of just functions. Therefore, instead of
writing

some_stub(cap, other_parameters)
as in C, Python programmers can write
cap.some_stub(other_parameters)

This 1s better because it reduces name conflicts: in Python, no confusion is

possible between a stub and a local or global variable or user-defined function
with the same name.

4.1.5 Example All the preceding principles can be seen at work in the following
example. Suppose a function is declared in AIL as follows:

some_stub(*, in char buf([size:1000], in int size,
out int n_done, out int status);

In C 1t might be called by the following code (including declarations, for clarity,
but not initializations):

int err, n_done, status;
capability cap;
char buf[500];

err = some_stub(&cap, buf, sizeof buf, &n_done, &status);
if (err != 0) return err;
printf("%d done; status = %d\n", n_done, status);

Equivalent code in Python might be the following:

cap = ...
buf = ...

n_done, status = cap.some_stub(buf)
print n_done, ’done;’, ’status =’, status

No explicit error check is required in Python: if the RPC fails, an exception is
raised so the print statement is never reached.

299

4.2 The Implementation

More or less orthogonal to the issue of how to map AIL operations to the Python
language is the question of how they should be implemented.

In principle it would be possible to use the same strategy that is used for C:
add an interface to Amoeba’s low-level RPC primitives to Python and generate
Python code to marshal parameters into and out of a buffer. However, Python’s
high-level data types are not well suited for marshalling: byte-level operations
are clumsy and expensive, with the result that marshalling a single byte of data
can take several Python statements. This would mean that a large amount of
code would be needed to implement a stub, which would cost a lot of time to
parse and take up a lot of space in ‘compiled’ form (as parse tree or pseudo
code). Execution of the marshalling code would be sluggish as well.

We therefore chose an alternate approach, writing the marshalling in C, which
is efficient at such byte-level operations. While it is easy enough to generate C
code that can be linked with the Python interpreter, it would obviously not
stimulate the use of Python for server testing if each change to an interface
required relinking the interpreter (dynamic loading of C code is not yet available
on Amoeba). This is circumvented by the following solution: the marshalling
1s handled by a simple virtual machine, and AIL generates instructions for this
machine. An interpreter for the machine is linked into the Python interpreter
and reads its instructions from a file written by AIL.

T'he machine language for our virtual machine is dubbed Stubcode. Stubcode is
a super-speclalized language. There are two sets of of about a dozen instructions
each: one set marshals Python objects representing parameters into a buffer,
the other set (similar but not quite symmetric) unmarshals results from a buffer
Into Python objects. The Stubcode interpreter uses a stack to hold Python
Intermediate results. Other state elements are an Amoeba header and buffer, a
pointer indicating the current position in the buffer, and of course a program
counter. Besides (un)marshalling, the virtual machine must also implement
type checking, and raise a Python exception when a parameter does not have
the expected type.

T'he Stubcode interpreter marshals Python data types very efficiently, since
each Instruction can marshal a large amount of data. For instance, a whole
Python string is marshalled by a single Stubcode instruction, which (after some
checking) executes the most efficient byte-copying loop possible — it calls memcpy ().

Construction details of the Stubcode interpreter are straightforward. Most
complications are caused by the peculiarities of AIL’s strategy module and
Python’s type system. By far the most complex single instruction is the ‘loop’
instruction, which is used to marshal arrays.

As an example, here is the complete Stubcode program (with spaces and com-
ments added for clarity) generated for the function some_stub() of the example
above. The stack contains pointers to Python objects, and its initial contents
1s the parameter to the function, the string buf. The final stack contents will
be the function return value, the tuple (n_done, status). The name header
refers to the fixed size Amoeba RPC header structure.

300

BufSize 1000 Allocate RPC buffer of 1000 bytes

Dup 1 Duplicate stack top

StringS Replace stack top by its string size
Putl h_extra int32 Store top element in header.h_extra
TStringSlt 1000 Assert string size less than 1000
PutVS Marshal variable-size string

Trans 1234 Execute the RPC (request code 123/)
Getl h_extra int32 Push integer from header .h_extra
Getl h_size int32 Push wnteger from header.h_size
Pack 2 Pack top 2 elements into a tuple

As much work as possible is done by the Python back-end in AIL, rather
than in the Stubcode interpreter, to make the latter both simple and fast. For
instance, the decision to eliminate an array size parameter from the Python pa-
rameter list i1s taken by AIL, and Stubcode instructions are generated to recover
the size from the actual parameter and to marshal it properly. Similarly, there
1s a special alignment instruction (not used in the example) to meet alignment
requirements.

Communication between AIL and the Stubcode generator is via the file system .
For each stub function, AIL creates a file in its output directory, named after
the stub with a specific suffix. This file contains a machine-readable version of
the Stubcode program for the stub. The Python user can specify a search path
containing directories which the interpreter searches for a Stubcode file the first
time the definition for a particular stub is needed.

AIL data types to Python data types make it necessary to help the Python
programmer a bit in figuring out the parameters to a call. Although in most
cases the rules are simple enough, it is sometimes hard to figure out exactly
what the parameter and return values of a particular stub are. There are two
sources of help in this case: first, the exception contains enough information so
that the user can figure what type was expected; second, AIL’s Python back-end
optionally generates a human-readable ‘interface specification’ file.

5 (CONCLUSION

We have succeeded in creating a useful extension to Python that enables Amoeba
server writers to test and experiment with their server in a much more interactive
manner. We hope that this facility will add to the popularity of AIL amongst
Amoeba programmers.

Python’s extensibility was proven convincingly by the exercise (performed by
the second author) of adding the Stubcode interpreter to Python. Standard
data abstraction techniques are used to insulate extension modules from details
of the rest of the Python interpreter. In the case of the Stubcode interpreter
this worked well enough that it survived a major overhaul of the main Python
interpreter virtually unchanged.

On the other hand, adding a new back-end to AIL turned out to be quite a

301

bit of work. One problem, specific to Python, was to be expected: Python’s
variable-size data types differ considerably from the C-derived data model that
AIL favors. Two additional problems we encountered were the complexity of the
interface between AIL’s second and third phases, and a number of remaining
bugs in the second phase that surfaced when the implementation of the Python
back-end was tested. The bugs have been tracked down and fixed, but nothing
has been done about the complexity of the interface.

5.1 Future Plans

AIL’s C back-end generates server main loop code as well as client stubs. The
Python back-end currently only generates client stubs, so it is not yet possible
to write servers in Python. While it is clearly more important to be able to
use Python as a client than as a server, the ability to write server prototypes in
Python would be a valuable addition: it allows server designers to experiment
with interfaces in a much earlier stage of the design, with a much smaller pro-
eramming effort. This makes it possible to concentrate on concepts first, before
worrying about efficient implementation.

The unmarshalling done in the server is almost symmetric with the marshalling
in the client, and vice versa, so relative small extensions to the Stubcode virtual
machine will allow its use in a server main loop. We hope to find the time to
add this feature to a future version of Python.

6 AVAILABILITY

The Python source distribution is available to Internet users by anonymous ftp
to site ftp.cwi.nl [IP address 192.16.184.180] from directory /pub, file name
python*.tar.Z (where the * stands for a version number). This is a compressed
UNIX tar file containing the C source and IATpXdocumentation for the Python
interpreter. It includes the Python library modules and the Stubcode interpreter,
as well as many example Python programs. Total disk space occupied by the
distribution is about 3 Mb; compilation requires 1-3 Mb depending on the con-
figuration built, the compile options, etc.

REFERENCES

1. A.D. BIRRELL, E.D. LAZOWSKA, AND E. WOBBER (1987). Flume — Remote
Procedure Call Stub Generator for Modula-2+. DEC SRC, (Topaz manual
page), Palo Alto, CA. - '

2. A. D. BIRRELL AND B. J. NELSON (February 1984). Implementing Remote
Procedure Calls. ACM Transactions on Computer Systems 2, No. 1, 39-59.

3. LucAa CARDELLI ET AL. (November 1989). Modula-3 Report (revised). Tech.
Rep. 52, DEC SRC, Palo Alto, CA. -

4. LEO GEURTS, LAMBERT MEERTENS, AND STEVEN PEMBERTON (1990). ABC
Programmer’s Handbook. Prentice-Hall, London, ISBN 0-13-000027-2.

5. P.R. MCJONES AND G.F. SWART (September 1987). Evolving the UNIX

System Interface to Support Multithreaded Programs. Tech. Rep. 21, DEC
SRC, Palo Alto, CA.

302

6. 5.J. MULLENDER, G. VAN ROSsuM, A.S. TANENBAUM, R. VAN RENESSE,
AND J.M. VAN STAVEREN (May 1990). Amoeba: A Distributed Operating
System for the 1990s. IEEE Computer Magazine 23, No. 5, 44-53. _

7. A.5. TANENBAUM, R. VAN RENESSE, J.M. VAN STAVEREN, G.J. SHARP,

- S.J. MULLENDER, A.J. JANSEN, AND G. VAN ROSSUM (December 1990). Ex-
periences with the Amoeba Distributed Operating System. Communications
of the ACM 33, No. 12, 46-63. |

8. G. VAN RossuM (April 1988). STDWIN —— A Standard Window System
Interface. Tech. Rep. CS-R8817, CWI, Amsterdam. ._

9. G. vAN Rossum (1990). AIL A Class-Oriented Stub Generator for

Amoeba, in Workshop on Progress in Distributed Operating Systems and D1is-

Zimmer (eds.), Springer Verlag.

303

